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The Verlet, Verlet leap frog, Gear fixed time step, Gear variable time
step, Runge-Kutta, and Gauss-Radau algorithms have been compared
using trajectory data obtained from the integration of a one-dimen-
sional diatomic chain under constant pressure. Investigation into the
times of local and normal mode relaxation and conservation of the
constants of the mation facilitated comparison of the integration
technigues. It has been found that the Gauss-Radau algorithm, which
is not widely used in the simulation of chemical dynamics, generally
affards a higher accuracy at an improved efficiency,  © 1994 Academic
Press, Inc.

1. INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC)
methods are the two most widely used simulation techni-
ques currently employed in computer analysis of chemical
and physical systems. These techniques are linked via
statistical mechanics and the assumption of ergodicity.
Thus, if equilibrium properties of an ergodic system are
desired then either of these methods may be employed.
However, if time dependent {dynamical) properties are
required then MD simulation is the sole option.

Although much work has been done on the improvement
of MD algorithms [1, 27, it is clear that there is no single
algorithm available that is superior to all others for all
systems studied. This is made evident by the large number
of algorithms that are in use at present [3-5]. Although this
is partly attributable to the different accuracy and cfficiency
requirements of the various users, it is also due to the
inapplicability of certain algorithms for the study of specific
systems or properlics.

This paper presents the results obtained from the
- compatison of the Verlet [ 1], Verlet leap frog [1] {VLPF),
Gear variable ime step (GVTS), Gear fixed time step [1, 6]
(GFTS), Gauss-Radau [7] (Radau), and Runge-Kutta
[2] algorithms for the system presented below. These
algorithms represent a wide range of integrators {from those
which are subject to errors of order 61* in the position and
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8% in the velocity coordinates (where 8¢ is the micro time
step used in the Taylor expansion of the position and
velocity coordinates), as is the case for the Verlet algorithm,
to those intcgrators which have adjustable parameters for
energy conservation, notably the Radau and GVTS
algorithms. Our focus is on the Radau algorithm which
has found favour within our own group in recent years.
Pettersson and Markovi¢ have employed the Radau
algorithm to simulate van der Waals cluster scattering [8],
it has also been used by Markovic et al. in the study of
binary collisions [9] and by Davidsson er 4!, to simulate the
energy transfer properties of Br, diatomics {10]. In all of
these studies the Radau algorithm was found to be efficient
and to conserve energy to at least the tenth significant
figure. Apart from the Radau integrator, the various
algorithms investigated wilf not be discussed in detaii as this
is done in the references cited. Since it is the aim of this
article to help introduce the Radau integrator into the field
of chemical simulations where it is not widely employed, it
is briefly introduced in Appendix A. Although we do not
offer an analytical proofl of the superior efficiency and
accuracy of the Radau technique, the work presented in this
paper, together with the results alrcady obtained by our
group (see references cited above), give strong support to
the suitability of this method for a wide range of chemical
and physical dynamics applications.

The system investigated was a one-dimensional chain of
Morse oscillators under a constant external pressure. An
important difference between this system and other studied
previously is that the constant external pressure restricts the
bond lengths in such a way as to force the bonds to spend
most of their time on the repulsive part of the local mode
potential energy surface. This leads to frequent collisions
and interparticle forces that are, on average, larger than in
a system that is free from external pressure. In terms of the
integrator used, this means that the larger time steps
associated with the efficient, sophisticated algorithms may
be undesirable for the positive pressure system.,

A second relevant characteristic of the system studied
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is that it is essentially nonergodic at the internal energy
considered. Any fluctuations in the trajectory that result
from integrator inaccuracies may have a qualitative
influence on the path foliowed by the trajectory. In this way
the local equilibrium that is approached by the trajectory
will be influenced by integrator inaccuracies. It is also
possible that ergodicity may be induced by stochastic
inaccuracy. This is not the case for ergodic systems where
small fluctuations in the trajectory path is unlikely to lead
the trajectory away from global equilibrium. The chosen
system, thercfore, provides a particularly severe test of
integrator accuracy.

The tests employed in the comparison of the integration
techniques can be divided into two groups. The first
includes the traditional tests of back integrability, algorithm
efficiency, and algorithm conservation properties [1,2].
The second group includes the comparison of data relevant
to chemical dynamics. Local equilibriumi mode energies and
the time taken for the system to relax to local equilibrium
were chiosen for this purpose.

2. THE SYSTEM AND CALCULATIONS

The system studied is a one-dimensional chain of 10
bromine molecules (Br,), where the alternating weak
intermolecular and strong intramolecular bonds are both
described by Morse potentials. At either end of the chain
there is a particle (with the mass of a Br atom) whose
function it is to convey the constant pressure to the system.
The system is clearly bounded due to the presence of the
pressure. The Hamiltonian for this system is
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where m is the atomic mass of Br, v, is the atomic velocity,
ra; are the intermolecular bond lengths, and D, , 8., and
rea are the intermolecular Morse parameters. The identical
terms with the subscripth are the corresponding
intramolecular Morse parameters. The force constant, &,
acts over the chain length r,, _,. The values of the Morse
parameters { 10 ] are listed in Table I. The value of the force
constant used is 2.97 keal mol —'A ",

The above Hamiltonian was studied since, together with
the Morse parameters listed in Table I, it is representative of
Br, gas [10,11] and is typical of most diatomic gases
(although the dimensionality has been reduced from three
to one). In general, diatomic frequencies depend on the
masses of the bond atoms and the bond force constant. They
range from below 41.99 ¢cm ! (corresponding to the heavy
Cs, diatomic) to 4400 cm ' (the frequency of H;) [11].
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TABLE I

Inter- and Intra-Molecular Bond Morse Parameters Used
in the Diatomic Chain Hamiltonian

Bond type

Morse parameter Intermolecular Intramolecular

D, 03370 45.889
J; 1.4848 1.9400
re 40410 2.2800

The intramolecular bond frequency of 398 cm ™', obtained
using the tabulated parameters (when the effect of the
constant pressure is excluded and low energy harmonic
oscillations are assumed ), lies within this range, whereas the
intermolecular frequency of 28.15cm~' describe slower
oscillations typical of van der Waals bonds.

Although Lennard-Jones functions are generally used to
describe intermolecular bonds, Morse functions have been
employed in this investigation. The Br,—Br, intermolecular
bonds spend as much as 98 % of the trajectory time on the
repulsive part of the bond potential energy surface due to
the positive pressure. The dynamics is thus better described
by employing the more accurate exponential repulsion
offered by the Morse potential than the r~!2 repulsion used
in the Lennard-Jones description.

The six algorithms listed in the Introduction were used to
integrate the system described above. Comparison of the
performance of these algorithms proceeded as follows:

1. Comparison of the energy and linear momentum
conservation and back integrability of each algorithm over
1, 2, and 3000 ps and, in the case of the energy and linear
momentum studies, over 60 ns. The back integrability was
not compared over this longer period since none of the
algorithms showed back integrability over the shorter
period of 3000 ps,

2. Algorithm efficiency comparisons.

3. Comparison of the instantaneous bond lengths of
bonds 10 and 11 and atomic velocity of atom 15 as a
function of time. Bonds 10 and 11 and atom 15 were chosen
arbitrarily. Bond 10 is the fifth intermolecular bond and
bond 11 is the fifth intramolecular bond. This shows the
divergence of the trajectories as a funcion of the algorithm
used.

4. Comparison of the long (60 ns) time-average energies
of bonds 10 and 11 and of normal modes 5 and 19. These
normal modes were chosen arbitrary—mode 5 having low
frequency (39.0 cm ') and mode 19 having high frequency
(331.1 cm~!'). Clearly these modes are not normal in the
strict sense of the word since these simulations were
performed at finite energy in the presence of anhar-
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monicities. This comparison was performed because the
time-average properties are often calculated to obtain a
direct determination of the ergodicity of the system, ie., the
long time-average of any property (obtained from MD)
equals the corresponding ensemble-average {obtained from
microcanonical MC) if the system is ergodic.

5. Comparison of the time taken for the system to relax
to the time-average values determined. In the case of an
ergodic system this is the time taken to relax to global
equilibrium and for a nonergodic system, such as the one
studied in this paper, it leldS the time taken to relax to local
equilibrium.

6. Another quantity that is often of interest is the
ensemble-average generated from short MD simulations.
By reducing the time of the simulation it is hoped that the
round-off errors inherent in computational calculations and
the inaccuracies inherent in the integrator will be reduced.
In the case of the nonergodic system studied, 4000 ps
trajectories were required to obtain meaningful relaxation
values. The Boltzmann H-function method used by Henry
and Grindlay [12] to determine the time taken by each
mode to reach local equilibrium was deemed suitabie for
this application. Thus, the equilibrium ¢nergy and plateau
value of the ensemble-generated H-functions for bonds 10
and 11 and normal modes 5 and 19 were compared as a
function of algorithm used.

7. The time taken to reach the platean region (ie.,
relaxation to local equilibrium) was determined for the
various algorithms,

Thus, apart from the traditional comparisons of back
integrability and algorithm conservation properties and
efficiencies, comparisons were also made using the data
relevant 10 the understanding of the systemn dynamics from
a chemical perspective.

As mentioned above, both the time-average and
ensemble-average mode energies have been obtained. The
time-averaging is performed over a single long trajectory
whose initial configuration is obtained from MC simulation.
That is, equilibrium coordinates are used for the initial
configuration and the time taken for the chain to relax is the
time taken for the average mode energics {determined by
Ex =N | En /N, where E . is the instantaneous
mode energy ai time step s and N is a specific number of
time steps along the trajectory) to converge. Thus, at each
step along the trajectory the average mode energy is
calculated and compared to the corresponding energies of
the other similar modes. After effects of the fluctuations have
been minimised by the averaging procedure, these values
converge. The convergence of these average mode energies
indicates that the system has relaxed to local equilibrium.

The reason for using this method to determine the time of
relaxation instead of determining the time taken to relax to
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the MC calculated equilibrium mode energy is that, due to
the nonergodic nature of the system, global equilibrium is
not generally approached by an arbitrarily chosen trajec-
tory. The relaxation time is therefore the time taken to reach
a local equilibrium, where the average mode energies of all
similar modes are equal.

The ensemble-averaging is performed over a swarm of
trajectories using E ::Me SN _E% 4./N, where N is the
number of trajectories in the ensemble and E7 . is the
mode energy at a particular time step observed along irajec-
tory n. Clearly, if the initial configurations for the individual
trajectories are chosen to be uncorrelated equilibrium coor-
dinates (obtained from MC methods), then the ensemble-
average mode energy will be equal to the equilibrium value
at all times. In order to obtain a relaxation time it is there-
fore necessary to choose another set of initial conditions
when performing ensemble-averaging. In this work the
starting configurations were obtained by exciting a specific
mode from the uncorrelated MC coordinates. The decay of
the ensemble-average energy out of this mode yielded the
relaxation time.

The initial conditions and methods of determining the
time-average and ensemble-average energies and times of
relaxation are, therefore, very different. As a result, the
average mode energies and relaxation times obtained from
these two techniques are not comparable.

When undertaking a comparison of this nature it is
obviously extremely important to minimise all extraneous
influences. In an effort to do this the following conditions
were adhered 10

1. The initial internal energy, £ nud | of the system was

set equal to 200.000000 kcal mol ~! for all trajectories.
2. Identical starting coordinates:

The same microcanonical MC-determined coor-
dinates were used as the initial coordinates for all
algorithms. This set of coordinates could be used
directly by the seclf-starting integrators. These
integrators require one instantaneous system
configuration in the input; that is, just a single set of
particle positions and velocities (which is valid at a
single time step) is required in the input for these
integration methods.

Two of the integrators studied are non-self-starting
in the sense that, in order to initialise the integration,
they require the system’s coordinates at more than
one time step along the trajectory path. The Verlet
algorithm requires particle positions at two
neighbouring time steps while the VLPF requires the
intial particle velocities at a time equal to half the
step size away from the initial particle positions.

In order to begin the trajectories propagated by the
non-self-starting integrators in the same sub-volume
of phase space, the starting coordinates for the Verlet
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algorithm were determined by propagating the
original coordinates (i.e., those used as input for the
self-starting integrators) over one time step using the
GFTS algorithm. This yielded the two sets of particle
positions required as input by the Verlet integration
procedure.

The starting coordinates of the trajectory
propagated by the VLPF algorithm were determined
in a similar manner. The GFTS algorithm was used
to propagate the trajectory over two time steps, each
equivalent to one-half of the micro time step. The
first step yielded particle velocities one-half of a time
step before the particle positions—which were
obtained by the second step—as required by the
VLPF integration scheme.

The same random numbers were used to determine
the 100 MC starting coordinates for the ensembie-
average tests.

In the case of the normal mode ensemble-average
tests, the normal mode excitation was performed
with the same random numbers {for each algorithm)
to ensure the same initial phase and velocity corre-
sponding to the excitation. The initial configuration
was obtained by putting virtually all’ of the excess
energy (i¢., the energy above classical zero) into
normal mode 5.

In order to study the ensemble-averages of local
modes 10 and 11, local mode 10 was excited by com-
pressing bond 10 (the fifth intermolecular bond) to
2.67 A while all the other local modes were placed at
their equilibrium positions. This gave a total
potential energy of 199.5 kcal mol ~'. The remaining
energy (0.5 kcal mol~"') was randomly distributed
among the atomic velocities (using the same random
numbers for all the algorithms).

3. Comparisons were made using the same fixed step
length. In the case of the two variable time step methods, the
time step was chosen as described below.

4. All other variables (e.g., Morse parameters) remained
fixed.

The concepts of macro and micro time steps are needed to
describe the method used to ensure comparable step lengths
for both variables and fixed time step integration schemes;
The macro time step, which pertains to the variable time
step integrators, is the step length used for each call to the
integration subroutine. This time step is adjusted to allow
one to exit from this subroutine in order to obtain trajectory
data at specific times throughout the length of the trajec-
tory. Within the subroutine the time steps {used in the
Taylor expansion, for example) are varied to maintain the

! The remaining modes were given a minimal amount (0.01 Aw) of
energy.
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required accuracy. These variable time steps are the micro
time steps. Fixed time step integrators integrate the trajec-
tory over one time step for each call to the integration
subroutine. Thus, in this case, the macro time step, micro
time step and fixed time step are synonymous,

The fixed time step used was determined as follows: The
GVTS algorithm was used with a macro time step of
6.356 fs. Since an average of 4.56 steps were performed in
each macro time step (determined over a 60 ns trajectory),
the time step used for the fixed step integrators was
6.356/4.56 = 1.394 fs. This gave a direct comparison between
the performance of the GVTS and the fixed time step
algorithms.

It was not as simpie to determine a similar macro time
step for the second variable time step algorithm—the Radau
integrator. The main reasons for this were that the efficiency
of the integrator improves with larger macro time steps and
thus for optimal efficiency the macro time step should be the
trajectory length, and, that this integrator allows one to set
the accuracy desired. The time step and the efficiency
decrease as the accuracy requiremeni becomes more
stringent, In keeping with the notation of Everhart [7], a
large LL parameter, which implies a high accuracy, reduces
the step size (see Appendix A for a detailed description
of LL}.

Since it was expected that the Radau integrator would
give accurate simulations, the value of LL was initially set
equal to 16 (this value has been used to conserve energy to
better than one part in 10'? {87). The energy conservation
obtained using this extremely strict criterion (LL =16} is
marked appropriately (see the next section}. This stringent
accuracy requirement made the integrator extremely
inefficient compared to the other algorithms. Whereas the
GVTS algorithm required 0.305 ¢pu seconds to propagate a
1 ps trajectory, it took the Radau algorithm 8.42 cpu
seconds to integrate the same trajectory. When this same
comparison was made over 60ns (giving the Radau
integrator a macro step size of 60 ns) the Radau integrator
was stili at least six times less efficient than the GVTS algo-
rithm. As a result of this inefliciency, no {urther comparisons
were made using the Radau integrator under these
conditions,

The energy conservation criterion was thus relaxed in an
effort to improve the efficiency. A macro step size of 6.35 fs,
together with a value of LL =4 meant that the integrator
performed a micro step equivalent in 0.8371 % 10~ % cpu
seconds (whereas the GVTS algorithm required
0.4245 » 10~ cpu seconds). A further reduction in the value
of LL did not improve the efficiency significantly. The
efficiency was, however, still too poor to perform long
integration runs.

By increasing the macro step to 1 ps, the time per micro
step was reduced to 0.3939 + 10~* 5. The Radau integrator
18, therefore, more efficient than the GVTS when this step
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size is emploved. As this macto step size s increased the
efficiency is further improved. Since the LL value remained
unaltered, this improvement in efficiency was obtained
withowt decreasing the integrator accuracy. In order to
obtain mode energies at the same time steps as the other
algorithms—in order to accommodate comparisons of
mode relaxation times—the Radau integrator with an L1
value of 4 and a macro time step of 348.40 §5 was used for the
jong time and ensembie integrations.

It should be noted that an LL value of 4, while
being suitable for the one-dimensional chain, may not be
applicable for all systems and accuracy requirements. 1t is
suggested by Everhart [ 77 that LY should be assigned an
initial value of 8, and that this value should be altered
depending on the accuracy reguired. Although this sugges-
tion was made for the integration of planetary motion, we
have found that it holds for chemical systems and, for
COMIMON accuracy requirements {energy conservation to 7
or 8 significant figures), LL values lower than this are
suitable. The improved performance of the Radau algorithm
shown in this work {using LL = 4} is thus relevant to a wide
range of chemical and physical systems.

3. RESULTS AND DISCUSSION

3.1, Conservation Properties and Back Integration

It is common to assign a certain accuracy to a particular
atgorithm based on its conservation and back integrability
properties {1,2,7]. This is usually done for a 1 or 2ps
trajectory. The same was done in this comparison but, due
to the lower dimensionality of the system studied and the
effects of the constant pressure, direct comparison with
other systems is not feasible. The trend in the accuracy of the
algorithms studied wouid, however, be expected to resemble
that found for other systems.

Table H lists the fractional deviation in the total internal
energy as a function of the integrator employed over trajec-
tories of 1 and 2ps. The fractional deviation in the energy is

TABLE 11

Fractional Energy Deviation {Maximum Deviation/Initial
Energy) of the Internal Energy over 1 and 2 ps trajectories

Algorithm name i-ps trajectory 2-ps trajectary

GVTS —~750%10"¢ 1351077
GFTS —120%10? L3707
VLPF 331« 10~°% 531»10°°%
Verlet —4.02» 102 407 % 10F
Runge-Kutta - 100 %1977 — 190 %1077
Radau {LI, =4} 1p—u p-Y
Radan (LL = 16) -1 -2

Note, Negative deviations indicate a loss in energy.
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the ratio of the maximum deviation in the energy over the
complete trajectory (1 or 2 ps) to the £ The trend
of improved energy comservation {smaller deviations)
obtained for higher order algorithms is as expected with the
lower order integrators {e.g., the VLPF and Verlet) showing
worse conservation (larger deviations) than the higher
order integrators. The variable time step methods have
superior energy conservation properties since this is kept at
a set level throughout the algorithm.?

It is noticeable that the fractional deviations in energy of
the trajectories propagated by the Verlet and VLPF proce-
dures are independent of whether the trajectory time is 1
or 2 ps. The reason for this is that the maximum deviation
1 a combination of the initislisation procedure of the non-
self-starting integrators and the fact that the [argest
subsequent deviation occurs within the first half of the 2-ps
trajectory. For example, the Verlet algorithm requires two
consecutive sets of particle positions in order to propagate
a trajectory. As described earlier, the GFTS procedure was
used to integrate the original coordinates {x7, ¥} over one
time step to yield the second set of coordinates {x], %}}.
Using these two sets of positions, the Verlet integrator
predicts a third set of positions, {x?}, with errors of order ¢
and then uses these new positions together with {x?} to
generate the velocities {%!} with errot of order 2. These
velocities, {x}}, together with the positions at this time step,
{x}], are used to obtain the energy at the first step of the
Verlet-propagated trajectory. This energy was caleulated to
be 199.995350 kcai mol~*. Thus, the initialisation proce-
dure required by the Verlet algorithm leads to a {ractional
deviation in the internal energy of 2.325 + 1077, Whereas
the coordinates at this step were determined from velocities
and positions which were pactially obtained from the non-
time~reversible GFTS algorithm, all subsequent steps are
determined by the Verlet algorithm which /s time reversible,
The energy of the trajectary therefore fluctnates around
199.995350 kcal mol ™!, The maximum deviation is thus the
sum of the initial deviation and the maximum fluctuation
{1.69 % 10> kcal mol ~*). Since the maximum fluctuation
occurs within the first picosecond of the 2-ps trajectory, the
maximum deviation is the same for the 1- and 2-ps
traiectories as shown in Table 1.

Figures 1 and 2 show the conservation of internal energy
obtained using the various algorithms over trajectories of
3000 ps and 60 ns, respectively. 1t is clear that the energy of
the trajectory propagated by the time-reversible Verlet
algorithm fluctuates around 199.995350 keal mol ' and the
energy of the trajectory propagated by the VLPF algorithm
fluctuates around 200.008204 kcal mol ™', Since there s no

This is not precisely true for the GVTS algorithm since the conserva-
tion limit is ignored if the time step becomes too small. It is, however, the
general idea behind variable time step algarithms and-is applicable to the
Radau integrator.
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FIG. 1. Time dependence of the system internal energy over 3000 ps.
The energy conservation of the Radau algorithm is compared with those of
the time invariant (Verlet and VLPF) and lower order sel{-starting algo-
rithms. Due to the integration methods of the non-selfstarting algorithms
{which satisfy time reversal invariance), they do not show a continual
decrease in energy.

continuous decrease in energy over time as there is for the
higher order algorithms {which are not time reversible), it
may be preferable to use the lower order Verlet and VLPF
algorithms for the propagation of long trajectories.
However, the noisy time dependence of the energy suggests
that the trajectory may not be so accurate by other
measures.

The figures also show that the Radau algorithm offers
superior energy conservation compared to the other higher
order algorithms for all times. The Radau algorithm used
here had the low energy conservation parameter of LL =4
(and a macro step of 348.4 fs). The energy conservation and
back integrability over 1 and 2 ps were not tested at this
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FIG. 2. Time dependence of the system internal energy over the 60 ns
trajectory.
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macro step size since 3484 fs is not a factor of 1000
or 2000 fs.

Due to the muitiple crossings of the remaining three
trajectories, it 1s impossible to designate a- particular
algorithm as being superior to the others over all times. It is
clear, however, that the energy conservation of the Runge-
Kutta algorithm is almost always better than that of the
GVTS. The GFTS is worse than these two integrators at
shorter times (see Fig. 1) but is comparatively better at
longer times (see Fig. 2). The good long time conservation
of the predictor—corrector algorithm is expected due to the
stability of this method of integration. Clearly, introducing
an error-limiting condition into this algorithm partially
removes the stability associated with the integrator.

The linear momentum conservation over 1 and 2 ps was
excellent for all integrators with the GVTS conserving to
the 1lith significant figure, the GFTS, VLPF, and
Runge-Kutta integrators conserving to the 12th significant
figure and the Radau integrator conserving to the [3th
significant figure. The Verlet algorithm conserved to the
eighth significant figure. The energy conservation
requirements are clearly far more difficult to fulfil than
momentum conservation requirements.

The back integrability is the most stringent test that is
traditionally used to ascertain aigorithm accuracy. Tabie I1]
shows the number of significant figures recovered when
back integrating a trajectory over 1 and 2 ps. The back
integrability is tabulated as a function of the integration
scheme employed. The position and velocity coordinates are
shown separately since the slower varying position
coordinates usuvally show superior back integrability. All
values are in reduced units.

The trend in the back integrability of the algorithms is the
same as that for the energy conservation (it should be
remembered that the poor back integrability of the time-
reversible Verlet and VLPF procedures is due to the
initialisation procedure). This is expected since both good
back integrability and good energy conservation are

TABLE 1

Back Integrability over 1 and 2 ps Shown as the Number of
Significant Figures Recovered

1 ps trajectory 2 ps trajectory

Algorithm name Position  Velocity Position  Velocity

GVTS
GFTS
VLPF
Verlet
Runge-Kutta
Raday (LL =4)
Radau (LL =16)
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associated with algorithm accuracy. When comparison
between the integrators is made in terms of their back
integrability, it is clear that the Radau algorithm is far
superiot to the other algerithms studied,

The 3000-ps back integrated trajectories showed no back
integrability for any of the algorithms tested; that is, all
coordinates changed in the first significant figure.

The tests described above show that all integrators have
good energy conservation, but good back integrability is
only obtained for the higher order algorithms. Thus, based
on conservation properties, the higher order algorithms
would be preferred to the lower order ones. However, the
algorithm chosen will be dependent on the conservation
requirements and the efficiency of the algorithm.

3.2, Algorithm Efficiency

Table IV gives the efficiency comparison between the
different integrators investigated. The time tabulated is the
time required to integrate a single trajectory over a period
of 1ps. The values were obtained by propagating 20 ns
trajectories and dividing the total cpu time by 2 » 10* {the
starting configuration was the same for all trajectories). The
step size for the fixed time step integrators was 1.394 fs (see
the previous section), for the GVTS it was 6.356 fs and for
the Radau it was the trajectory length. 1t should be noted
that no concerted effort was made to improve the integrator
code in order to obtain maximum efficiency, The resuits
shown are, howegver, obtained from compiler-optimised
code.

The low order VLPF algorithm is the most efficient of ali
the algorithms compared. The Verlet integrator is also a low
order algorithm but it is less efficient because the positions
of two consecutive steps need to be availabie in each
integration (which necessitates an extra do-loop), the new
positions need to be calculated and a division is required to
calculate the velocity (these inefficient steps can be removed
if a concerted effort is made to maximise the integrator
efficiency ).

TABLE IV

Comparison of the CPU Time Reguired to Integrate
the System over 1 ps

Algorithm name CPU time/s Force ficld evaluations
GVTS Q0.132 14112940
GFTS 0.150 14351235
VLPF 0.101 14351235
Verlet 0.123 14351235

Runge-Kutta 0.397 57404937
Radau 0.134 11906579

Nate. The second column lists the number of force field evaluations
petformed during the 20 ns trajectory. Integration was perfornmed on an
IBM RISC System/6000 320.
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The GVTS is more efficient than the GFTS since fewer
force field evaluations are required for this trajectory when
using the GVTS technique (see Table IV} (It has been
observed that other trajectories require more force field
evaluations by the GVTS scheme in order to maintain a
specific accuracy. In these cases the GVTS wiil become less
efficient.) The Runge-Kutta integrator is less efficient than
the GVTS despite the fact that it is a fixed time step method.
This decrease in efficiency is expected since it is an iterative
procedure.

It is clear that the Radau integrator is very efficient even
though it is a higher order algorithm and has excellent
conservation properties. However, it must be remembered
that this efficiency is only achieved by using large macro
step sizes (see the previous section) and thus if output is
required at short, regular {fixed-time) intervals this proce-
dure is unsuitable. Since regular output is not generally
required for the analysis of data obtained from MD simula- -
tions, the Radau integrator will be preferred for most
investigations of a chemical or physical nature.

The greater efficiency of the Radau technique is due, in
part, to the reduced number of force field evaluations (see
Table I'V) afforded by the variable time step procedure.
However, it is possible that for larger systems, where the
interactions are larger in number and more compiex, a
larger number of force field evaluations will be performed in
order to maintain the desired accuracy. This would reduce
the efficiency of this variable time step technique. In order to
investigate the effect of the system size, we have considered
the cas¢ where all the atoms in the chain interact via the
weak Morse potentials listed in Table I (ie., the limitation
to nearest neighbour interaction has been removed to
include ali possible interactions). This change will lead to a
significant increase in the time spent on the force field
evaluation. The results listed in Table V were obtained in an
identical manner to those of Table IV, but they pertain to
the system with global interactions. For this system, the
GVTS procedure is less efficient than the GFTS technique
since more force field evaluations are required to maintain
the required accuracy (which is the same as it was for the
nearest neighbour interaction chain). The Radau integra-

TABLE V

The Same as for Table IV for the System Characterised by Global
Interactions (See Text for Details)

Algorithm name CPU time/s Force field evaluations
GVTS 0.947 15268099
GFTS 0.908 14351235
VLPF (.864 14351235
Verlet 889 14351235

Runge-Kutta 3416 57404937
Radau 0.787 12356219
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tion method is, once again, very efficient since it requires
fewer force field evaluations than the other methods. Due to
the increase in time taken to evaluate the force field, the
saving in cpu time when using the Radau algorithm is
substantial.

Although the Radau integrator is superior for the one-
dimensional chain systems investigated (and, as has been
discussed, this system is a severe test for higher order algo-
rithms), we cannot exclude the possibility that for certain
systems—or certain trajectories in 2 particular system—this
integration scheme may require a large number of force field
evaluations to maintain a high accuracy and thereby be less
efficient than the best low order integrators,

3.3. Comparison of Time-Averages

Although the instantancous values of the cartesian and
internal coordinates are not expected to be similar for
trajectories propagated by different algorithms over chemi-
cally significant times, one would hope that their time- and
ensemble-averages will be approximately the same, so that
correct conclusions regarding the properties and dynamics
of the system (e.g., ergodicity of the system and rate of vibra-
tional relaxation} can be drawn regardless of the algorithm
used, The tests discussed below focus on this point.

Figure 3 shows the instantancous velocity of atom 15
between 100 and 102 ps. Although these trajectories have
identical initial coordinates, it is clear that the discrepancy
in the instantaneous particle velocities occurs within a short
period. Similar plots for the bond lengths yield similar
results, thereby showing that different instantaneous coor-
dinate values are obtained when different integration
procedures are employed. Comparison of instantaneous
coordinate values which are obtained from different integra-
tion techniques is not feasible except within very short
periods of integration.
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FIG. 3. Time dependence of the instantaneous velocity of atom 13
illustrating the influence of the integration scheme employed.
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FIG. 4. Time-average energy of normal mode 5, obtained when trajec-
tories with identical initial coordinates are propagated using different
integration schemes.

The instantaneous coordinates generated by MD simula-
tion are often used to generate data regarding the ergodic
properties of a system and to generate the internal rate of
relaxation. This can be obtained, for example, by studying
the time-average bond energy over a single long trajectory
or an ensemble-average of the bond energy over time. Both
methods were investigated.

Since the system studied is apparently nonergodic, there
is no relaxation to a global equilibrium. In fact, the local
equilibrium that is obtained within a set of similar bonds is
strongly dependent on the starting configuration. The same
starting configuration (determined from MC sampling) was
therefore used for all the algorithms studied. Equilibrium
was attained once the long time-averages of all similar
bonds or all similar normal modes were equal.* The system
studied shows two distinct sets of bonds (hence its non-
ergodicity); the weak Morse bonds {of which bond 10 1s an
element) and the strong Morse bonds (of which bond 11 is
an element). This gives rise to two separable sets of normal
modes, a low frequency set (of which normal mode 5 is an
element) and a high frequency set (of which normal mode
19 is an element).

The time-average energies—determined from a single
trajectory—of normal modes 5 and 19 are shown in Figs. 4
and 5 while the time-average energies of bonds 10 and 11
are plotted in Figs. 6 and 7. It is clear from these graphs that
the time-average mode energies are influence by the integra-
tion method employed. This dependence of the time-average

* Since absolute equality is not computationally obtainable, a small
deviation is allowed. These were 0.032 kcal mol ~! for the strong Morse
bonds, 0.015 kcal mol ~! for the weak Morse bonds, 0.15 kcal mol ! for
the low frequency normal modes and 0.05kcal mol™! for the high
frequency normal modes. Equality of mode energies was assumed if the
energies were within this error deviation for 500 ps.
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FIG. 5. The same as for Fig.4 but for normal mode19. The

dependence of the time-average mode energy on the integration method
employed is apparent.

mode energies on the integration procedure is explained
with the aid of Fig. 8.

Figure 8 shows the time-average energy of bond 11
(determined in an identical manner to that illustrated in
Fig. 7), where the different curves in this figure are
calculated from time-averaging over trajectories with
different initial coordinates but the same initial energy
(200.000000 kcal mol ') and propagated by the same
integrator (GVTS). Thus, whereas Fig. 7 shows the
influence of the integration scheme on the time-average
mode energies, Fig. 8 illustrates the influence of the initial
coordinates on these energies. It is evident from Fig. 8 that
the time-average mode energies are influenced by the initial
configuration (as is expected for a nonergodic system) and
that the range of these energies is large (ie., at 60 ns the
range in energies of the 10 trajectories investigated is
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FIG. 6. The same as for Fig. 4 but for bond 10. This bond is repre-
sentative of the weak Morse bonds in the diatomic chain.
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FIG. 7. The same as for Fig. 4 but for bond 11. This bond is repre-
sentative of the strong bonds in the diatomic chain.

approximately 0.25kcalmol™'). The 10 trajectories
propagated to generate the data shown in Fig. 8 are just 10
of many such trajectories determined by different starting
configurations. In the discussion below the trajectories
used to generate Fig. 8 will be referred to as trajlgvrs,
traj2 gvrs, - 11aj10Gyrs-

Suppose that {x, .., X3, X, ..., X5} are the initial coor-
dinates (positions and velocities, respectively) of the trajec-
tory used to generate the data in Fig. 7. These are also the
coordinates used to generate trajl gy shown in Fig. 8. The
set of coordinates {xj, .., x5, X}, ..., X5, } determined by
one GVTS integration step clearly lie on trajlgyrs. It
is clear that the corresponding set of coordinates
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FIG. 8. Time-average energy of bond 11 obtained when trajectories
with different MC determined initial coordinates are propagated by the
GVTS algorithm, The dependence of the time-average mode energies on
the imitial coordinates is illustrated over a 60 ns trajectory.
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{x7, . x5, %7, .., X5,} determined by a single integration
step using the Radau integrator (for example) will differ
from x|, ., xh;, X}, .., %47} due to the differences in
accuracy and method of the two integration schemes. In
general, the configuration- defined by {x§,.., x5,
X715 s %5, } will not lie on traj! ;y1s. Hence, even though the
starting coordinates are identical, different integrators
will propagate different trajectories. Thus, the eifect of main-
taining identical starting coordinates but varying the
integration scheme used to propagate these coordinates is
similar to the effect of propagating different initial coor-
dinates using a single integration method. That is, since the
configuration defined by {x}, .., x5, X{, ., X532} is in the
phase space accessible to this system at 200.000000
keal mol ~ 1, it will lie on one of the trajectories propagated
by the GVTS method (ie., one of the traj2gyys, ...). This
results in a range of time-average mode energics (e.g,
approximately 0.15 kcal mol~ " at 60 ns in Fig. 7) due to the
different integration schemes in the same way that there are
a range of energies due to different initial coordinates (see
Fig. 8).

Therefore, it is clear that time-average mode energy com-
parisons based on single trajectories propagated by different
algorithms is not feasibie even when the initial coordinates
are identical.

When a system is nonergodic the difference in initial coor-
dinates of two trajectories, e.g., trajlgyys and trai2gyqs,
may result in their exploring different regions of phase
space, thereby vyielding different time-average mode
energies. The rate at which a specific trajectory covers its
available phase space will depend on properties such as the
size of phase space accessible to that trajectory and the way
in which the trajectory propagates through phase space.
This may be different for different trajectories and hence the
rate of relaxation to local equilibrium (which is governed by
the time it takes for a trajectory to cover a representative
part of its accessible phase space} will also depend on the
starting coordinates of the trajectory. It is, therefore,
expected that the {trajectories trajlgyrs, traj2gvrss o
traj!0gGyre will have different relaxation times. This is the
case as is shown in Table VL.

Since the effect of propagating trajectories (with identical
starting coordinates) using different integrators is akin to
the effect of varying the initial coordinates (and using the
same method of integration), one would expect that time-
averapge mode relaxation times would also depend on the
integration methed. This is the case as is shown in
Table VI1. Thus, in a similar way to that described for the
time-average mode energies, there is a range of relaxation
times that can be sampled. The particular relaxation time
determined depends on the initial coordinates chosen and
on the integration scheme employed.

Hence, in addition to the fact that the comparison of
time-average properties obtained using different integrators
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TABLE VI

Time-Average Relaxation Times (See Text for Details) for
the Trajectories Shown in Fig. 8

Trajectory Relaxation time/ps
trajf gvrs 12100
a2 cvrs 14800
trajdgyrs 33600
trajd gvrs 50900
1185 Gvrs > 60 ns
trajboyrs 13100
tray7 gvrs 20600
tra)8 gvrs 42000
ffﬂjgg\,-—[s 7660

raj10gyvys > 60 ns

Note. The dependence of the relaxation time on the initial trajectory
coordinates is iltustrated.

is not feasible, the corresponding relaxation rates can also
only be compared if they are obtained using the same
integration scheme.

As was discussed in Section 2, the initial conditions used
when determining time- and ensemble-average mode
energies were different. When ensemble-average mode
energies were calculated it was necessary to use a starting
configuration where one of the modes was excited (see Sec-
tion 2 for details), whereas equilibrium starting coordinates
obtained by MC sampling were used when determining
time-average mode energies. The choice of equilibrium star-
ting coordinates allowed one to observe the large influence
that the integration method has on the time-average mode
energies and relaxation rates. This influence of the inte-
grator limits our ability to draw chemical and dynamical
conclusions from individual trajectories representing an
equilibrium fluctuation. If, instead, initial coordiates similar
to those used in the ensembie-averaging method were used
{i.c., initially exciting one of the modes) then the “error

TABLE VI1

Thme-Averaged Relaxation Times (ps} as a Function
of the Algorithm Used

Relaxation Relaxation Relaxation  Relaxation
Name of time for time for time for time for
algorithm bond 10 bond 11 mode 5 mode 19
GVTS 11600 12100 8530 23200
GFTS 7150 6070 14900 8540
YLPF 36 19100 =60 ns > 60 ns
Verlet 6640 4150 =60 us >60 ng
Runge-Kutta 30300 54800 1700 10200
Radau 7830 25800 709 11000
Note. These relaxation times are oblained from a single trajectory as

described in the text.
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margin” that is allowed on either side of the equilibrium
mode energy value could be increased. As the initial mode
excitation is increased, this error margin could also be
increased. This would obviously decrease the dependence of
the time-average mode energy (which would be more coarse
grained) and the corresponding relaxation time on the
integration scheme employed.

Before discussing the ensemble-average results, it is of
interest to compare the above results with those that would
be observed for an ergodic system. The fact that the system
studied in this report is apparently nonergodic meant that
the starting coordinates (and integration method) deter-
mined which trajectory (e.g., trajlgvrs, - tajl0gyrs)
would be propagated. In the case of an ergodic system one
trajectory covers, in essence, the total phase space. This
means essentially that all initial conditions (determined
from microcanonical MC sampling) will lic on this trajec-
tory and that the same time-average mode energies (the
global equilibrium values) will be determined independently
of the starting coordinates chosen. Also, since the effect of
the integrator is just to predict a new configuration on
essentially the same trajectory (ie., {x}, .., x5, %}, .., X33}
and {x{, .., X3, %[, .., X3, } lie on the same and only trajec-
tory), the time-average mode energies will be independent
of the integration scheme (apart from the relatively minor
differences due to the overall loss in energy of the system).
It is expected, however, that the relaxation times will be
weakly integrator dependent with the more inaccurate
integrators {which introduce stochasticities into the system)
propagating trajectories that would, in general, yield
shorter relaxation times.

These predictions were validated using the one-dimen-
sional chain Hamiltonian described in the previous section
where all the bonds were strong; that is, the Morse
parameters of all bonds were the intramolecular Morse
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FIG. 9. Time-average energy of bond 11 obtained when trajectories of
an ergodic system are propagated using different integration schemes,
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TABLE VII1

Time-Average Relaxaiion Times Obtained when Propagating
Trajectories of an Ergodic System

algorithm Relaxation time/ps
GVTS 458
GVES 49.3
VLPF 474
Verlet 21.4
Runge-Kutta 47.8
Radau 334

Nore. The averaging technique employed here is identical to that used
to generate the data of Table VII.

parameters listed in Tablel This system is apparently
ergodic at an internal energy of 200.000000 kcal mol—".
Figure 9 shows the time-average energy of bond 11 for the
ergodic system and Table VIII lists the corresponding
relaxation times. 1t is clear from Fig. 9 that the time-average
mode energies converge over 75 ps, thus showing that the
time-average mode energy is independent of the integration
scheme employed. This constrasts with the result obtained
for the non-ergodic system (see Fig. 7). The relaxation times
listed in Table VIII show that these “ergodic” relaxation
times are only weakly influenced by the integration scheme
employed (when compared to those of the non-ergodic
system shown in Table VII). The stochastic trajectory
propagated by the Verlet algorithimm—which employs first-
order velocity predictions—-leads to a relaxation time that is
much shorter than those yielded by the other integration
techniques.

3.4. Comparison of Ensemble-Averages

The ensemble-average energy of a mode is defined as
Et e=2N L Ef /N, where {ET ..} are the energies
obtained from the ¥ different trajectories at the same time
step. In contrast to the method of determining time-average
mode energies, the ensemble-averaging is not based on a
single trajectory and thus the effects of integrator inac-
curacies in determining £, 4, are averaged out at each time
step. This fact, together with the fact that the simulations
are performed over shorter trajectories, Ieads one to expect
thai the ensemble-average equilibrium values will be less
sensitive to the algorithm used, as will be the time taken for
mode relaxation to equilibrium.

The Boltzmann H-function [12] was used to determine
the time taken for mode relaxation to Jocal equilibrium. If
this function fails to a plateau region (i.e., a minimum that
is maintained over a period of time) then the system is taken
to be in equilibrium [12] and the relaxation time is the time
taken to reach this plateau region. The coarse-grained
H-function for mode m was determined as follows: One
hundred trajectories were propagated under the conditions
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TABLE IX

Plateaun Value of the H-Function Obtained from the Normal
Mode Ensemble Averages and Related Relaxation Times

Name of Platean value Decay time Plateau value Decay time
algorithm  for mode 5 for mode 5/ps for mode 19 for mode 19/ps
GVTS 166 794 152 3370
GFTS 166 8.36 149 3400
VLPF 166 8.36 151 3135
Verlet 166 8.36 149 3880
Runge-Kutta 166 8.36 156 3170
Radau 165 8.36 150 3780

described in the previous section and the energy of mode m
was monitored over the length of these trajectories. The
maximum and minimum energy, E™* and E™", that
mode m obtained over any of these trajectories was used to
define an energy range, [E™* E™"7] for mode m. This
range was subsequently divided into 100 equal bins each
having a range of [E™*, E™*7/100. Since 100 trajectories
were run there are 100 energies, {e,}, associated with
mode m at any specific time step. These energies were parti-
tioned into the bins defined above. If n,, is the number of
occasions that a mode energy, ¢,,, was inserted into bin i
(i=1, .., 100}, then the H-function is given by

This function is, therefore, determined at each time step and
can thus be evaluated over the length of the trajectory.

A typical ensemble-generated H-function plot is shown in
Fig. 10. This is the plot obtained for normal mode 19 using
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FIG. 10. The ensemble generated Boltzmann H-function for normal
mode 19 illustrating the typical decay to a plateau region. This plot was
generated using the GVTS algorithm.
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TABLE X
Same as Table IX, but for Local Modes 10 and 11

Name of Plateau value Decay time Plateau value Decay time
algorithm  for bond 10 for bond 10/ps for bond 11 for bond 11/ps
GVTS 150 254 169 453
GFTS 150 300 167 439
VLPF 150 300 165 45.3
Verlet 151 300 169 44.6
Runge-Kutta 150 300 167 439
Radau 150 265 168 41.1

the GVTS algorithm and shows the decay to a plateau
region; that is, it shows the decay to local equilibrivm.

The comparison of the H-function plateau vaiue (ie.,
the value of the H-function where the plateau value is
reached—see, for example, Fig. 10 where the platean value
is 152) and the time taken to reach equilibrium is shown in
Tables IX and X, while Table XI lists the equilibrium
energies of the various modes. It is apparent that all algo-
rithms give comparable relaxation energies and times of
relaxation when the ensemble-average method is employed.
It is therefore more feasible to compare the ensemble-
generated relaxation energies and times obtained from
different algorithms than the corresponding time-average
values,

4. CONCLUSIONS

Algorithms representing a wide range of molecular
dynamics integrators have been compared. The system used
to conduct the comparison is considered to be severe for
two reasons: First, the system is apparently nonergodic at
the internal energy considered and thus the local equi-
librium attained is dependent on the starting coordinates. If
the system had been ergodic then equilibrium may have
been obtained by all algorithms, thereby minimising the
influences of integrator related fluctuations in the trajectory.
Second, the system is under a high pressure. This restricts

TABLE XI

Ensemble-Average Equilibrium Mode Energies (kcal mol —!)

Algorithm name Normal mode 5 Normal moede 19 Bond 10 Bond 11

GVTS 1.30 0.0744 .909 0.207
GFTS 1.31 0.108 0.907 0.208
VLPF 1.31 0.105 0.908 0.215
Verlet 1.31 0.105 0.907 0.189
Runge-Kutta 1.31 0.0999 0913 0.201
Radau 1.31 0.108 0.909 0.201
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the bond motion to the repulsive region of the bond poten-
tials for the majority of the time. The forces are thus always
large, thereby decreasing the efficiency of the higher order
variable time step algorithms which rely on large step
lengths in regions of low force to increase their efficiency.

The accuracy of the six different integrators studied has
been compared by investigating their energy conservation
ability and back integrability. The resuits show the expected
trend that the higher order algorithms are more accurate
than the low order algorithms and that the more
sophisticated variable time step procedures are more
accurate than the fixed time step procedures. The lowest
order Verlet and VLPF algorithms show the best energy
conservation for long time trajectories (due to the method
of integration which satisfies time reversal invariance). In
general, the increase in accuracy is accompanied by a loss of
efficiency. It has been shown, however, that the Radau
integrator is highly accurate and efficient, provided that
output is not required at frequent and specific times.

Inter-aigerithm comparison between ensemble-average
equilibrium values and time taken for mode relaxation is
far more feasible than the corresponding time-average
comparison. The results show that the mode relaxation
times and average energies are insensitive to the algorithm
used for the simulation when ensemble-averaging techni-
ques are employed.

The comparisons made in this report show that the
Radau algorithm has superior conservation properties to
the other self-starting integrators and is also more efficient
in general applications where output is not required at
regular intervals. This observation holds for the apparently
nonergodic, rapid collision system studied. It is in full agree-
ment with the evidence [rom earlier applications of the
Radau algorithm made by Markovic er 2/ to binary
molecular collisions [9] and large inert gas clusters [8].

A general conclusion from these results relates to the
importance of selecting the algorithm that is best suited to
the type and accuracy of output required from an MD
simulation in addition to the characteristics of the MD
trajectory (e.g., length of run). For example, if the ergodicity
of a system is to be ascertained over a pus period or longer,
it is imperative to have good energy conservation (since a
system’s ergodic behaviour is strongly energy dependent).
The low order Verlet and VLPF algorithms may be best
suited to this type of MD simulation because of their long
time energy conservation characteristics. However, this is
achieved at the cost of poorer short time accuracy. Thus,
timescales shorter than 100 ps may be better probed by
higher order algorithms in the case of the present system. It
is, of course, common to improve energy conservation by
rescaling of velocities at regular intervals during the run, but
this device may be associated with errors of another type.
Higher order algorithms are thus not always superior to
their low order counterparts.
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APPENDIX: THE IMPLICIT GAUSS-RADAU
INTEGRATION TECHNIQUE

The description of the Radau algorithm presented here is
merely a brief overview of the integration technique and is
included in this report for the sake of completeness. The
concepts presented here have been extracted from a more
detailed description which has been presented, together
with the relevant computer code, by Everhart [7, 14].

The force (acceleration) experienced by a particle at
time ¢ is a function of the positions of all the particles in that
system at ¢. Since the force 1s separable in the x, ¥, and z
directions, one has

x=F.=f(x,y,z,0, 8, % .., 1),

where F_ is the force on the particle in the x direction; x, y,
z are the position coordinates of particle 1; «, S, y are the
position coordinates of particle 2; etc. In many of the
common integration techniques, this force is included in the
Taylor expansion of the position (and velocity ) which, when
no higher order terms are added, yields an integration of
third-order accuracy. The force used in these integration
techniques is the force on the particle at the beginning of the
time step. It is assumed that the time step chosen is
sufficiently small so that the force is essentially constant
over the integration step. Clearly, the assumption of a
constant force leads to inaccuracies in the integration.
Integration schemes such as the Runge—Kutta and the
Gauss—-Radau techniques thus attempt to employ a force
which is more representative of the force over the complete
step length. In the present application the force is expanded
in a time series of the form

f=F . =F 4+ A1+ 4,24+ A2+ . + A", (1)
where F| is the force at t=0; that is, F, is the force on the
particle in the x direction at the beginning of the time step.
The velocity and position of the particle at ¢ can be obtained
by integrating Eq. (1). Thus

)'C=)21+F11+A112+A21‘3/3

+ A AN (2)

and

X=X+ X t+F 2+ A4,0/6+ A4,1*/12

+ A3 0204 -+ AVTHINE DIIN+2). (3)

Clearly, if the coefficients A4, ..., 4, can be determined
accurately then the value calculated for the position
and velocity at time ¢ will be accurate. Thxs is the aim of
trajectory integration.
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There are many sets of coefficients satisfying Egs. {1}
to (3). Some will exceed the accuracy implied by the Taylor
series expansion. Such sets will be used here. The form of
Eq. (1) is thus not the usual Taylor expansion since the
coefficients A, .., A, are altered when integrating over
subsequent steps (called sequences) in order to obtain an
accurate position and velocity at the end of each step
(sequence).

The procedure outlined below is followed in order to
determine the coefficients in Eq. (1) at the end of a sequence
of length 7" Time steps 1, =0, t,, 14, .., 5= T are chosen
within the sequence length T and F, is calculated at each of
these steps. If F1,), .., F (ty) are known-—and F, is
analytical—then it is possible to express F, in the form

Fo=Fitoat+at(t—6H)roagt(t =)0 -1+ -, (4)

where the coefficients «,, ... can readily be determined by
noting that

FAt))=F, {since t, =0)
FAt.)=F,+a,t
dt)=F +a1, )
FAta)=F +ajty+ayty{t;— 1)
Solving for {«;} yields,?
ay = (F— Fy)f1,
(6)

ay = ((F5— F)/ty —a )/ (t:—12)

The coefficients 4, .., 4, in Eq. {1) can be determined
from these values of o;. By equating like powers of ¢ in

Egs. (1) and (4) one obtains

Ay=o+ (=) e+ ) as+ -
=cCy o oy a, oy o+

Ay=ty+ (L —t)ay+ -
=Cply+ Cypdy+ -

Ay=a3+ - =yt -

* Fach new time step adds another &, to Eq. (4) {and another equation
to Egs. (5)) without altering the preceding {«,}. This very important point
will be referred to Jater.

581/113/2-13
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where the coefficients ¢; have the recursion relationships
given by

=1,
Cn=—4LHCi 1, i>1
C-"j=ci~l.j'41—tr'ci-l,j? 1<_}<l

Thus, by determining the values of «; from Eqgs. (6),
accurate values of A4,,.., 4y can be determined from
Eqs. (7) and hence, accurate positions and velocities can be
predicted from Eqs. (2} and (3). Explicitly, if the force on a
particle in the x direction at ¢ =¢, =0 (the beginning of the
sequence) is F, and the first time step is ¢,, then the force at
1y is given by F (1)) = f(x. ¥, 2, Xy, ¥15 275 s L) If this is
the first sequence of the trajectory then A, ... A4, are set
equal to zero so that (from Egs. (2} and (3))

)'C(t2)=)'C]+FIIZ
and

x(!2)=.\‘1 +):'132+F1f§/2.

These positions {and velocities) are used to calculate F_(7,).
oy 15 then determined from Egs. (6), i.e.,

X, = (F\:(IZ) — Fl)/r2'
Finally, from Egs. (7),

A =u,.

Simiiarly, il the next time step is 15, then the velocities and
positions at ¢, are obtained from Eqs. (2) and (3) as

55([3]=J'Cl+F1t3+A1t§/2
and

x(ta)=x,+ & 0+ Fy 132+ A, 3/6.
These coordinates are used to calculate the force on the
particle in the x direction at 15, i.e, F (+;). Equation (6) is

then used to determine 25, i.¢.,

oy = ({F(t1) ~ F )15 — o )i (15— 15),

and, hence, A, is improved and A, is determined from
Eq. (7). That i,

1=y (=)o,
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and
A2=tx2.

Thus, at each new step ¢ the previous values of 4,
Jj<i-—1 are improved and A4,_, is determined. In order to
improve the values of A, .., 4, even further, the sequence
may be repeated a number of times where the initial
Aq, .., Ay of a subsequent sequence are the final A,, .., 4y
of the preceding sequence.

It is found that the first sequence of a trajectory—where
Ay, .., Ay are set egual to zero—requires six sequence
repetitions to obtain 4,..,d, of sufficient accuracy.
However, in subsequent sequences the previous 4, ..., Ay
(or an extrapolated value of the previous A4,, .., 4,) are
used as the initial 4, ..., 4, and, hence, just two sequence
repetitions are required for accurate prediction of the
velocity and positions. In this manner the computational
efficiency is dramatically improved.

The preceding description is valid for any (fixed or
variable) time steps 1;,=0, f5,¢;, .., ty=T within the
sequence, Hence, if it is decided to solve F, over three time
steps within the sequence, i.e, {;, =0, 5, 3, 1,=T, Egs. (2)
and (3) have the form

X=X+ Fii+ 4,02+ 4,03+ 4,1%/4 (8)

and

X=X 4 X0+ F 24 4, 0/6+ A,0812 + 4,6/20. (9)

Thus the position is accurate to order 5 in 1 and the velocity
is accurate to order 4 in ¢. It is possible to choose specific
step sizes so as to increase the order in position accuracy by
2 and in the velocity accuracy by 3 without any additional
steps (i.¢., without decreasing the computational efficiency ).
This technique is explained below.

If seventh-order accuracy in the position is desired then
an expression of the form

x=x,+ X0+ F P22+ A 5/6+ A51%12
+ A,15204 A, 1%30 + AL 7/42

is required. The difference between the seventh- and
fifth-order prediction of x at the end of the sequence T is

Ax = (A, — A,) T¥6+ (A — A;) TH12+ (A3~ A4) T%/20
+ A T30+ A5 T7/42, (10)

The aim js to choose f,, ¢4, £, in such a way that 4x=0. If
this can be achieved then, by using just three time steps
within each sequence, seventh-order accuracy will be
obtained.

As was specified in the footnote earlier in the Appendix,
incorporating additional values of a; in Eq. (4) does not
alter the preceding o;. Thus, from Eqgs. (7) it s clear that
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Ay~ A =y 0+ C5p 85,

Ay — Ay =t s,

Ay — Ay = a3+ 05385,
A= Caatty 4 C5qts,
As=cs4505.

Using the recursion relationships described previously, the
c5; coefficients can be expressed in terms of ¢, ..., ¢44. That
18,

Cs5= 1!

€54 = Cay — I5Caqs

Cs3= Ca3 — I5Ca3,

Cs53= Cqp —I5Cqa,

Csy = —1sCay.

Substituting these changes into Eq. (10) and introducing
the variable s, =1,/T which leads to the recursion rela-
tionships being expressed in terms of k; (eg, c4 =
—lylyty > Cly = —hyhah,) yields

Ax= (2~ tsas) T°Ley, /6 + /124 ¢43/20 4 1/30]
S asT7lch /12 + ¢4/20 + €43 /30 + 1/427.

Setting the expressions in the square brackets to zero will set
dx to zero {(and hence seventh-order integration accuracy
will be obtained ) independently of «,, ¢, and t5. To achieve
this one must solve

Car/6+ ¢iy /12 + ¢43/20 + 1/30 =0,
Ca /12 4+ ¢4 /20 4 €la /30 +1/42 =0,
and also
Car/2+ /34 cia/d+1/5=0,
cy 3+ e/ + /S +1/5=0,
a4+ chp/5+cin/6+1/7=0,

which are obtained from a similar treatment of the velocity
ceordinates. Solving these equations simultaneously (two of
them are redundant) yields
Cyr = —hshshy= — 34_5,-
Co=hhy+hihg+hhy= 'g,
Coa=—hy—hy—hy= -5,
or, expressed in another form,
h,=1,/T=02123,
hy=£,/T=0.5905,

hy,=1,T=08114.

These are the Gauss—Radau spacings.
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Thus, if the sequence length Tis known then A, (or ¢,) can
be chosen to be the Gauss—Radau spacings so that Ax =0.
Seventh-order accuracy in the velocity and the position is
thereby obtained from using just three time steps within
the sequence. That is, the integration accuracy is greatly
enhanced without reducing the computational efficiency.

As has been described, an improved accuracy with good
efficiency is obtained by vsing Gauss-Radau spacings and
by using initial values of 4, ..., 4, that are {(extrapolated
from) the final values of the peceding sequence. It is possible
to increase the efficiency of the algorithm still further by
allowing the sequence length, T, to vary. In this way the
sequence length can be maximised—within an accuracy
constraint—thereby improving the efficiency. This is
achieved as follows.

The value of 4, (the last coefficient in the force expan-
sion) which is used as an initial value in a new sequence,
denoted A%, is determined from the preceding A, by
I3 Z A N

NE=TF {11)
where T is the length of the new sequence. This relation is
valid for all extrapolation methods used. The last term in
the position expansion—which is a function of 4, (see
Eq. (3))—gives a good indication of the accuracy of the
integration; that is, the smaller the value of this term the
more accurate the expansion since it implies that the higher
order terms make insignificant contributions to the expan-
sion. This term is thus used to control the accuracy of
integration in the following manner: An accuracy constraint
is entered into the integration scheme as an input parameter
(LL). This parameter is used by setting

10-1 = A TN+ 2N + 1)(N +2).

Thus LL governs the magnitude of the final term in the next
sequence. From Eq. (11} one has

107" = (TYTYANT VYN +1) N +2).
Rearranging vields
T¥F=T(N+1)(N+2)10-"1/4,.
In this way T, the new sequence length, is determined to
comply to the desired accuracy constraint.

In summary, the Gauss-Radau integration offers an
extremely accurate method of integration while maintaining
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good efficiency. This is achieved by performing the force
evaluations at Gauss-Radau spacings, using previous
coefficients 4, .., A which are merely improved upon in
subsequent sequences and by maximising the sequence
length while still maintaining a predetermined accuracy.
This algorithm has therefore been employed in the field of
astronomy [ 7] and to a far smaller extent in simulations of
chemical and physical systems [8, 97.
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